Hipotesis Statistik. Kamu sedang melakukan penelitian kuantitatif? Sedang memahami tentang hipotesis statistik, namun masih terasa kesulitan? Nah, kali ini kami akan membantumu untuk memahami mengenai hipotesis statistik, dari pengertian, perbedaan, macam, dan contohnya. Supaya kamu makin mudah memahami tentang hipotesis statistik, simak sampai bawah ya!

Pengertian Hipotesis

Bab ini akan membahas mengenai pengertian dari hipotesis, ciri-ciri, fungsi, dan manfaatnya. 

1. Pengertian Hipotesis

Hipotesis berasal dari bahasa Yunani, yaitu Hypo dan Thesis. Hypo berarti lemah, kurang, atau di bawah, sedangkan Thesis berarti teori atau pernyataan yang disajikan dengan bukti. Dapat dikatakan bahwa hipotesis adalah suatu pernyataan yang masih lemah kebenarannya dan masih diperlukan pembuktian, atau dugaan sementara mengenai suatu hal.

Pengujian hipotesis merupakan suatu proses untuk menguji suatu hipotesis tersebut diterima atau ditolak untuk menjadi parameter dari sebuah populasi dalam penelitian. Tujuan dilakukan pengujian hipotesis adalah guna mendapatkan hasil yang berupa penentuan parameter dari sebuah penelitian kuantitatif yang membutuhkan pembuktian.

Penelitian kuantitatif mensyaratkan suatu penelitian tersebut dengan adanya hipotesis. Hipotesis tersebut akan diuji kebenarannya, bisa berupa diterima atau ditolak. Nah, untuk menguji kebenaran dari suatu penelitian kuantitatif maka harus menguji hipotesis statistik. Namun, sebelum kita memahami hipotesis statistik, perlu diketahui bahwa hipotesis yang baik itu memiliki ciri-ciri tertentu. Ciri-ciri tersebut bisa kamu pelajari di bawah ini.

2. Ciri-ciri Hipotesis yang Baik

Ada beberapa ciri-ciri yang menunjukkan bahwa hipotesis tersebut baik. Ciri-cirinya seperti di bawah ini.

  • Hipotesis harus sesuai dengan fakta
  • Hipotesis harus dapat menerangkan fakta
  • Hipotesis harus menyatakan hubungan
  • Hipotesis harus sesuai dengan ilmu
  • Hipotesis harus dapat diuji
  • Hipotesis harus sederhana

3. Fungsi Hipotesis

Hipotesis merupakan syarat utama dalam penelitian kuantitatif. Hipotesis memiliki beberapa fungsi dalam melancarkan suatu penelitian. Fungsinya dapat dirinci sebagai berikut. 

  • Membantu membuat kerangka penyusunan simpulan penelitian
  • Membantu proses pengujian kebenaran teori
  • Membantu mengarahkan proses penelitian
  • Memberikan gagasan baru dalam pengembangan teori 
  • Memberikan penjelasan sementara tentang gejala-gejala
  • Memudahkan perluasan pengetahuan pada suatu bidang
  • Memberikan gambaran pola pada suatu penelitian
  • Memberikan dasar dalam pemilihan sampel
  • Memberikan prosedur yang harus dilakukan dalam penelitian
  • Memudahkan penyajian dalam penarikan simpulan

4. Manfaat penggunaan atau penetapan hipotesis

Ada beberapa manfaat yang didapatkan oleh peneliti ketika menggunakan atau menetapkan hipotesis dalam penelitiannya. Beberapa manfaatnya sebagai berikut.

  • Hipotesis bisa sebagai panduan dalam pengujian dan penyesuaian antarfakta dan dengan fakta
  • Hipotesis bisa menjadi alat yang sederhana untuk memfokuskan fakta dalam penelitian yang acak tanpa perlu koordinasi dalam suatu satu kesatuan yang menyeluruh dan penting
  • Hipotesis dapat memperkecil jangkauan dan memberikan batasan kerja suatu penelitian
  • Hipotesis dapat menyiagakan peneliti pada hubungan antarfakta dan kondisi fakta yang kadangkala luput dari perhatian para peneliti.

Baca Juga: Hipotesis Penelitian: Pengertian, Jenis-Jenis, dan Contoh Lengkap

Pengertian Hipotesis Statistik menurut Ahli

1. Sheldon M. Ross (2017)

Hipotesis statistik adalah suatu pernyataan tentang sifat suatu populasi yang sering dinyatakan dalam parameter populasi.

2. Dictionary of Statistical Terms

Hipotesis statistik adalah sebuah pernyataan tentang parameter atau distribusi dari probabilitas untuk suatu populasi yang telah ditentukan, atau dapat dikatakan sebagai mekanisme probabilistik yang diharapkan untuk menghasilkan pengamatan.

3. John Kitchin (1994)

Hipotesis statistik yaitu suatu klaim atau pernyataan formal tentang keadaan alam yang terstruktur dalam kerangka model statistik.

Berdasarkan pendapat-pendapat di atas, dapat diambil simpulan bahwa hipotesis statistik adalah suatu pernyataan atau dugaan yang belum terbukti tentang suatu hal, bisa berupa sifat, fakta atau fenomena, dan dinyatakan dalam bentuk angka-angka statistik sesuai dengan alat ukur pada penelitian. 

Pengertian Hipotesis Statistik

Hipotesis statistik merupakan suatu dugaan atau pernyataan mengenai satu atau lebih sebuah populasi dalam penelitian. Hipotesis statistik merupakan salah satu cara pengujian dalam analisis dengan menggunakan sebagian data dari keseluruhan data pada penelitian kuantitatif. 

Hipotesis statistik adalah suatu pernyataan operasional dalam penelitian kuantitatif yang diterjemahkan dalam bentuk angka-angka statistik sesuai dengan alat ukur yang dikehendaki oleh peneliti. Hipotesis statistik bisa berupa dua hal, yaitu penjelasan sementara atau prediksi tentang suatu hal yang akan diteliti. Hipotesis statistik tersebut harus berkaitan dengan aspek-aspek keseluruhan data yang digunakan. 

Hipotesis menjadi sebagai prediksi ketika hipotesis tersebut memberikan gambaran tentang suatu fenomena sosial ke depan. Sedangkan hipotesis tersebut menjadi sebagai penjelasan sementara ketika hipotesis tersebut memuat adanya hubungan atau tidak antarvariabel, atau memberikan gambaran mengenai sebab akibat pada variabel-variabel tersebut.

Hipotesis yang digunakan dalam hipotesis statistika adalah statistika inferensial. Statistika inferensial adalah metode statistik yang digunakan dalam menganalisis data sampel yang hasilnya akan digeneralisasikan pada populasi dari sampel tersebut berasal. Bentuk dari hipotesis statistik bisa berupa satu variabel, seperti, normal, binomial, dan poison, atau nilai dari suatu parameter, yaitu, varians, mean, standar deviasi, dan proporsi.

Baca Juga: Teknik Analisis Data: Pengertian, Macam, dan Langkah-langkahnya

Jenis-jenis Hipotesis

Jenis-jenis hipotesis statistika dibagi menjadi 2, yaitu seperti di bawah ini.

1. Hipotesis Nol atau Null hypothesis (H0)

Hipotesis nol yaitu berupa pernyataan yang tidak ada perbedaan parameter atau karakteristik dalam populasi. Pada hipotesis nol selalu mengandung data yang ada di tingkat populasi, dan biasanya ditandai dengan tanda sama dengan “=”.

 Contohnya seperti di bawah ini.

  • Hipotesis nol (H0): “x sama dengan y”.
  • Hipotesis nol (H0): “x setidaknya y”.
  • Hipotesis nol (H0): “x paling banyak y”

2. Hipotesis Alternatif atau Alternative Hypothesis (H1)

Hipotesis Alternatif (H1), yaitu berupa pernyataan yang bertentangan dengan H0. Hipotesis alternatif bisa menunjukkan perbedaan dua kelompok, dan juga dapat menjelaskan hubungan antarvariabel. Contohnya seperti di bawah ini.

  • Hipotesis alternatif (H1): “x kurang dari y”
  • Hipotesis alternatif (H1): “x tidak sama dengan y”
  • Hipotesis alternatif (H1): “x lebih besar dari y”

Hipotesis alternatif dibagi menjadi dua bagian, yaitu sebagai berikut.

  • Hipotesis nondireksional atau tak terarah (Nondirectional Hypothesis) adalah menegaskan satu nilai yang berbeda dengan nilai yang lain. Selain itu, disebut juga hipotesis 2 sisi. Ditandai dengan tanda tidak sama dengan “≠”.
  • Hipotesis Direksional atau terarah (Directional Hypothesis) adalah menegaskan bahwa ada satu ukuran yang lebih kecil atau lebih besar dibandingkan ukuran lainnya dengan sifat serupa. Selain itu, disebut juga dengan hipotesis 1 sisi, ditandai dengan lebih kecil “<” atau lebih besar “>”.

Perbedaan Hipotesis Statistik & Hipotesis Penelitian

Hipotesis statistik berbeda dengan hipotesis penelitian. Bagaimana perbedaan antara keduanya? Simak penjelasannya di bawah ini.  

1. Hipotesis Statistik

Hipotesis statistik yaitu suatu pernyataan atau dugaan yang belum terbukti mengenai suatu populasi dalam penelitian yang dinyatakan dengan angka-angka statistik. Contohnya mengenai penelitian Hubungan antara usia dan kepuasan kerja perusahaan X. Hipotesis statistiknya seperti di bawah ini.

H0: p = 0

H1: p ≠ 0

2. Hipotesis Penelitian

Hipotesis penelitian adalah dugaan sementara atau jawaban sementara dari sebuah permasalahan yang berbentuk pernyataan. Hipotesis penelitian merupakan pernyataan yang dibuat oleh peneliti ketika berspekulasi atau menduga suatu hal secara realistis dan dapat diuji pada suatu penelitian.

Contohnya mengenai penelitian tentang Hubungan antara keaktifan mahasiswa di organisasi dan tingkat IPK. Hipotesisnya adalah sebagai berikut.

H1: Ada hubungan yang signifikan antara mahasiswa yang aktif mengatur dan menjadi administrator organisasi

H2: Ada hubungan signifikan antara mahasiswa yang aktif berorganisasi untuk mencapai tingkat IPK minimum

H3: Ada hubungan yang signifikan antara mahasiswa yang aktif mengatur dan memimpikan pekerjaan yang diinginkan setelah lulus

H4: Ada hubungan yang signifikan antara mahasiswa yang aktif berorganisasi dengan lama kuliah 4 tahun

Baca Juga: Penelitian Deskriptif: Pengertian, Kriteria, Metode, dan Contoh

Macam-macam Hipotesis

Hipotesis dibagi dalam 4 macam berdasarkan bentuknya. Di bawah ini adalah penjelasan 4 macam-macam hipotesis tersebut.

1. Hipotesis Deskriptif

Hipotesis deskriptif adalah suatu jawaban atau pernyataan sementara pada sampel dalam suatu kelompok yang memiliki beberapa perbedaan di dalamnya. Pada hipotesis deskriptif ini dapat menunjukkan hubungan antara variabel secara implisit. Selain itu, hipotesis deskriptif dapat disebut juga dengan dugaan sementara terhadap nilai suatu variabel tunggal dalam satu sampel, walaupun di dalamnya bisa jadi terdapat beberapa kategori. 

2. Hipotesis Komparatif (Perbandingan)

Hipotesis komparatif adalah suatu jawaban atau pernyataan sementara pada suatu rumusan masalah pada dua sampel atau lebih dalam satu komparasi atau perbandingan. Pada hipotesis komparatif ini dapat dilakukan dengan 2 atau lebih sampel yang dapat berupa dua hal, yaitu;

  • Komparasi tidak berhubungan (independen)
  • Komparasi berhubungan (related)

3. Hipotesis Asosiatif (Korelasional/Hubungan)

Hipotesis asosiatif adalah jawaban-jawaban atau pernyataan-pernyataan sementara pada suatu hubungan atau asosiasi antara variabel satu dengan variabel lain dalam suatu penelitian. Hipotesis asosiatif disebut juga dengan hipotesis yang mengukur kekuatan hubungan antardua variabel dalam suatu sampel penelitian. Pada hipotesis asosiatif terdapat hubungan yang tidak menunjukkan adanya sebab akibat.

4. Hipotesis Kausal

Hipotesis kausal adalah suatu jawaban sementara atau dugaan pada rumusan masalah yang mempertanyakan bagaimana pengaruh faktor terhadap variabel respon. Selain itu, hipotesis kausal dapat dikatakan sebagai hipotesis yang menyatakan hubungan sebab akibat antara dua variabel atau lebih. Pada hipotesis kausalitas terdapat hubungan yang menunjukkan adanya sebab akibat.

Baca Juga: Penelitian Studi Kasus: Pengertian, Jenis-Jenis, dan Contoh Lengkap

Prosedur Pengujian Hipotesis

Tujuan utama statistik adalah menguji hipotesis. Contohnya ketika kamu sedang melakukan penelitian dan menemukan bahwa ternyata suatu obat efektif dalam mengobati sakit kepala, akan tetapi kamu tidak dapat mengulangi percobaan tersebut dan tidak ada yang percaya dengan hasil penelitianmu. Untuk itu, kamu harus menerapkan pengujian hipotesis terlebih dahulu. 

Pengujian hipotesis adalah suatu proses yang digunakan untuk mengevaluasi kekuatan bukti dari sampel dan memberikan kerangka kerja untuk membuat penentuan terkait dengan populasi penelitian, yaitu memberikan metode untuk memahami seberapa andal seseorang dalam mengeksplorasi temuan yang diamati dalam sampel yang diteliti ke populasi dari mana sampel tersebut diambil (Davis & Mukamal, 2006).

Pada dasarnya, penelitian kuantitatif itu menguji teori, sehingga hipotesis sangat dibutuhkan dalam untuk pengujian teori tersebut. Pengujian hipotesis statistik haruslah diuji, karena dapat menentukan suatu teori tersebut diterima atau ditolak. Jika hipotesis tersebut diterima, pengujian tersebut membenarkan pernyataan tersebut, sedangkan apabila ditolak, maka ada penyangkalan dari pernyataan tersebut.

Pengujian hipotesis adalah tindakan dalam statistik yang mengharuskan seorang analis atau peneliti untuk menguji mengenai parameter populasi pada suatu penelitian.  Pengujian hipotesis digunakan untuk menilai apakah hipotesis tersebut masuk akal atau tidak berdasarkan sampel data yang dipilih. Data sampel tersebut mungkin berasal dari populasi yang lebih besar, atau dari proses yang menghasilkan data. 

Ada 4 tahap dalam pengujian hipotesis. Langkah-langkahnya pengujian hipotesis seperti di bawah ini.

  • Pertama, menyatakan dua hipotesis sehingga hanya ada salah satu yang benar
  • Kedua, merumuskan rencana analisis, yaitu menguraikan bagaimana data tersebut akan dievaluasi
  • Ketiga, melaksanakan rencana dan menganalisis data sampel secara fisik
  • Keempat, menganalisis hasil dan menolak hipotesis nol (H0) atau menyatakan hipotesis nol (H0) tersebut masuk akal berdasarkan datanya.

Contoh Hipotesis Statistik

1. Contoh Hipotesis Statistik Asosiatif (Korelasional)

Contoh hipotesis asosiatif atau korelasional, penjelasannya seperti di bawah ini.

  • Ada hubungan antara tingkat disiplin mahasiswa dan nilai yang diperoleh.

H0: p ≤ 0 

H1: p > 0

  • Ada hubungan antara tingkat disiplin mahasiswa dan nilai yang diperoleh; yaitu makin tinggi disiplin mahasiswa, maka nilai yang akan didapatkan akan semakin tinggi pula.

H0: p ≤ 0 

H1: p > 0

2. Contoh Hipotesis Statistik Kausalitas (Sebab akibat)

Contoh hipotesis kausalitas atau sebab akibat penjelasannya seperti di bawah ini. 

  • Ada pengaruh antara tingkat kesadaran dengan pengetahuan konsumen

H0: β = 0

H1: β ≠ 0

Pada hipotesis di atas angkat yang bukan nol nilainya bisa jadi negatif, bisa juga positif. Digunakan pada hipotesis tak terarah, dengan menolak H0, pengaruhnya bisa jadi positif, mungkin negatif.

  • Ada pengaruh antara ukuran perusahaan dengan efektivitas karyawan

H0: β = 0

H1: β ≠ 0

3. Contoh Hipotesis Statistik Komparatif (Perbedaan)

Contoh hipotesis komparatif atau perbedaan penjelasannya seperti di bawah ini.

  • Apakah terdapat perbedaan produktivitas karyawan perusahaan A sebelum dilatih dengan setelah dilatih
  • Uji satu pihak (pihak kiri)

H0: μ1 = μ2 (tidak terdapat perbedaan produktivitas karyawan sebelum dilatih dengan setelah dilatih)

H1: μ1 < μ2 (produktivitas karyawan sebelum dilatih lebih kecil dibandingkan dengan sesudah dilatih)

  • Uji satu pihak (pihak kanan)

H0: μ1 = μ2 (tidak terdapat perbedaan produktivitas karyawan sebelum dilatih dengan setelah dilatih)

H0: μ1 > μ2  (produktivitas karyawan sebelum dilatih lebih besar dibandingkan dengan setelah dilatih)

  • Uji dua pihak

H0: μ1 = μ2 (tidak terdapat perbedaan produktivitas karyawan sebelum dilatih dengan setelah dilatih)

H0: μ1 ≠ μ2 (terdapat perbedaan produktivitas karyawan sebelum dilatih dibandingkan dengan setelah dilatih)

Prosedur Penyusunan Hipotesis Statistik

Hipotesis harus disusun sebaik mungkin, dan dalam penyusunannya harus memperhatikan faktor-faktor tertentu. Faktor-faktor tersebut bisa kamu dipelajari di bawah ini.

  • Hipotesis haruslah dinyatakan dalam kalimat pernyataan atau deklaratif
  • Hipotesis haruslah dirumuskan secara padat dan jelas
  • Hipotesis haruslah dapat diuji kebenarannya
  • Hipotesis haruslah menyatakan pertautan antarvariabel atau lebih

Baca Juga: Data Penelitian: Pengertian, Klasifikasi, dan Contoh Lengkapnya

Kesalahan dalam Uji Hipotesis

Kemungkinan kesalahan dalam pengujian hipotesis ada 2 hal. Kesalahan tersebut bisa dipahami seperti di bawah ini. Sugiyono (2008:88) dinukil dari pitpitglu.blogspot.com, menjelaskan 2 kesalahan tersebut.

1. Kesalahan Tipe I

Kesalahan tipe I adalah suatu kesalahan bila menolak hipotesis nol (H0) yang benar, yang seharusnya diterima. Pada hal ini tingkat kesalahan dinyatakan dengan “a”.

2. Kesalahan Tipe II

Kesalahan tipe II adalah suatu kesalahan bila menerima hipotesis yang salah, yang seharusnya ditolak. Pada hal ini, tingkat kesalahan dinyatakan dengan “b”.